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Abstract—This paper investigates information-theoretic charac-
terization, via Shannon’s information capacity and number of de-
grees of freedom, of wave radiation (antenna) and wireless prop-
agation systems. Specifically, the paper derives, from the funda-
mental physical point of view of Maxwell’s equations describing
electromagnetic fields, the Shannon information capacity of space-
time wireless channels formed by electromagnetic sources and re-
ceivers in a known background medium. The theory is developed
first for the case of sources working at a fixed frequency (time-
harmonic case) and is expanded later to the more general case of
temporally bandlimited systems (time-domain fields). In the ban-
dlimited case we consider separately the two cases of time-lim-
ited and essentially bandlimited systems and of purely bandlim-
ited systems. The developments take into account the physical ra-
diated power constraint in addition to a constraint in the source L?
norm which acts to avoid antenna superdirectivity. Based on such
radiated power and current L? norm constraints we derive the
Shannon information capacity of canonical wireless and antenna
systems in free space, for a given additive Gaussian noise level, as
well as an associated number of degrees of freedom resulting from
such capacity calculations. The derived results also illustrate, from
a new information-theoretic point of view, the transition from near
to far fields.

Index Terms—Antenna, degrees of freedom, electromagnetic in-
formation, information capacity, wave information, wireless.

I. INTRODUCTION

HIS research is concerned with the formulation of funda-

mental wireless communication and antenna engineering
problems at the crossroads of the well-established fields of elec-
tromagnetic theory and information theory. The interdiscipli-
nary field constituted by such wave- and information-theoretic
problems and their solutions can be descriptively termed elec-
tromagnetic information theory or, within the antenna focus, an-
tenna information theory. Work in this area, combining wave
physics with information theory, has a long history, dating back
to the origins of information theory and, in particular, to the pi-
oneering work on light and information by Gabor [1]-[3] who
studied the number of degrees of freedom (NDF) [4] of diffrac-
tion-limited optical imaging systems via “essential dimension”
considerations (e.g., “resolution cell” concepts). The NDF of
imaging systems was investigated around the same time also
by di Francia [5]-[8] who explored the role of the evanescent
plane wave spectra in superresolution, as well as rigorous formal
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methodologies for NDF determination such as eigenvalue de-
compositions of integral operators and prolate spheroidal wave-
function theory [9], [10]. Related work from the same period
is that of Linfoot [11] and Fellgett and Linfoot [12] who liter-
ally treated imaging systems as communication channels. After
these seminal investigations, further progress on NDF of wave
radiation, propagation, and scattering systems has been reported
from time to time by other authors [4], [13]-[18].

In recent years, the need for both fundamental theory and
computational methodology for estimating both NDF and
Shannon’s information capacity [19], [20] of a variety of
wave radiation and propagation systems, including random
media channels, has been growing steadily, mostly due to
its fundamental importance in space-time wireless channels
including multiple-input multiple-output (MIMO) systems
[21]-[23]. The present paper builds from recent work with
this motivation, being of particular relevance the investigations
carried out by: Hanlen et al. [24], [25] who investigated general
communication channels within a general abstract operator
theory in Hilbert spaces and, within the scalar framework, the
information capacity in the formally tractable case of sources
and fields in spherical regions under the standard source L2
norm constraint; Hui ef al. [26] who similarly provided general
expressions for the information capacity of Gaussian wireless
links from a spatial region to another; Hanlen and Fu [27]
who proposed numerical techniques for estimating the NDF
of general wave propagation systems including media formed
by collections of scatterers embedded to a given background
medium (e.g., free space); Jensen and Wallace [28] (see also
their related past work in [29] and [30]) who studied the
information capacity of Gaussian wireless links between two
volumes under a constraint in the radiated power and who
also proposed an approach to limit antenna superdirectivity
while making the optimal power allocations for the different
wave propagative modes connecting the volumes; Morris et al.
[31] who also studied the effect of the superdirectivity on the
information capacity of MIMO systems under a radiated power
constraint; Gustafsson and Nordebo [32], [33] who studied the
spectral efficiency of an antenna inside a sphere, as measured
by the information capacity, by means of a model of MIMO
channels combining information theory, antenna theory, and
broadband matching theory; Migliore [34] who considered the
capacity and NDF of a group of antennas and scatterers inside
a sphere by means of the multipole expansion and equivalent
electrical networks and who also proposed a way to take into
account the temporal resources by means of a sampling theory
in space and time [35]; Chakraborty and Franceschetti [36]
who also considered the capacity of space-time communication
channels by means of a generalized sampling theorem applied
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to space and time; Poon et al. [37] who considered NDF and in-
formation capacity of indoor wave propagation systems based
on combined analytical and empirical, measurement-based
models, while also illustrating, among other aspects, the role
of cooperative versus noncooperative users in the environment;
and Xu and Janaswamy [38] who proposed a noise-dependent
definition to select the NDF in the approach in [18] and numeri-
cally studied the effect of multiple scattering in the propagation
environment.

The overall goal of the present paper is the investigation of
certain fundamental aspects not fully covered by previous work
in this fruitful area, mostly on information-theoretic character-
ization, via Shannon’s information capacity and NDF, of wave
radiation (antenna) and wireless propagation systems. Specifi-
cally, the paper derives, from the fundamental physical point of
view of Maxwell’s equations describing electromagnetic fields,
the information capacity of space-limited, time-limited, and es-
sentially bandlimited wireless channels as well as space-limited
and strictly bandlimited wireless channels formed by electro-
magnetic sources and receivers in a known background medium,
under the assumption of additive Gaussian noise perturbations.
While particular attention is given to free space, the results are
based on Green’s functions so that the general procedure and re-
sults derived in the paper apply to more general known media.
Among other aspects, the derived information-theoretic results
are also used to address related questions such as NDF for time-
domain fields, the transition from near to far fields in the time
domain, both of which are topics of much importance under the
broader umbrella of time-domain electromagnetics, as well as
the effect of finite transmit/receive times on the capacity and
NDF (in the time-limited and essentially bandlimited case).

Methodologically, the electromagnetic information results
are discussed first for time-harmonic excitation in Section III
of the paper, and generalized later to more general time-do-
main fields in Section IV. The connection between the general
electromagnetic information theory in Section IV, applicable to
quite general broadband fields, and the time-harmonic theory
in Section III (from which narrowband information-theoretic
concepts such as spectral efficiency can be derived) is also
discussed, along with illustration of the broader applicability
of the general approach in Section IV. The formulation in
Section IV builds from the one-dimensional time-domain
treatment of (temporally) bandlimited channels by Gallager
[39], which we generalize to the four-dimensional space-time
domain in the particular physical context of electromagnetic
wave radiation and propagation systems. Our work on the
space-limited, time-limited and essentially bandlimited case
appears to be new, while our work on the strictly bandlimited
case is a rigorous alternative that complements related research
in [35], [36] which is based on sampling theorems in space and
time.

Particular attention is given in this paper to the fundamental
problem of sources confined within a given spherical volume
of radius a, subjected to upper bounds limiting the maximal al-
lowed radiated power, and/or the maximal source L2 norm or
functional energy (related to impressed current levels in an an-
tenna, and thereby also to the associated ohmic losses which
must be bounded in practice as well as to superdirectivity con-
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trol [31]), for a given noise level at the field receiver. Thus, the
derived capacity and NDF results are immediately applicable to
sources and receivers in free space that are supported in concen-
tric spherical regions. However, many of the derived formalities
have applicability to more general geometries, as follows from
our discussion in Sections II-A and B of the paper where essen-
tially the general index « in Section II-B will in general substi-
tute the particular multipole-mode index a = j, [, m empha-
sized later in the paper (Section II-C and the rest of the paper).
An important aspect of the electromagnetic information theory
reported here is that our capacity and NDF calculations take into
account practical restrictions in both the source L* norm and the
radiated power. This is in contrast to all past work we are aware
of where the main emphasis has been to either constrain the
source L2 norm [24], [25], [37] or, more recently, to constrain
the radiated power only, while indirectly limiting the source L2
norm by means of different approaches like the restriction of
the transmission currents to specific subspaces [31], the use of
channel models that include the effect of the losses and thermal
noise [28], or the truncation of the number of terms in the expan-
sions of the field [32], [33]. In fact, our adoption of this method-
ology complements recently reported approaches in [28] and
[31] to estimate wireless electromagnetic capacity while penal-
izing antenna superdirectivity, and our treatment also provides
a different and independent reformulation of some of the results
in [28], [31] where, like those papers, we show that the radiated
power alone is generally insufficient as a constraint for electro-
magnetic capacity calculations and that, instead, it must be com-
plemented in practice by other physically motivated constraints
(such as the L2 norm constraint). Our treatment complements
the analysis in those papers by considering the two most typi-
cally adopted constraints simultaneously, and also goes beyond
the scope of that past work by extending the results to broad-
band fields. Also, regarding the calculation of the NDF, instead
of assuming an asymptotic behavior of the functions used in the
analysis in order to find a finite NDF or truncating the dimen-
sionality a priori by other criteria (as has been done in past work
in this area [4], [17], [18], [32]-[34], [37], [40]), we show that
this is not necessary since the optimal power assignment maxi-
mizing the mutual information between transmitter and receiver
already determines the number of channels that are useful for a
given noise level.

II. ELECTROMAGNETIC INFORMATION CHANNELS IN GENERAL
GEOMETRIES

This section reviews the representation of general and par-
ticular spatial electromagnetic channels in terms of the singular
system (Uy, Vo, 0q; @« = 1,2,...) of the corresponding
source-to-field mapping (see, e.g., [17] and [41, pp. 234-239]).
This representation is then used in the rest of the paper to
characterize information capacity and NDF.

A. General Sources and Fields in Hilbert Space

Consider an electromagnetic source 7 (r,t) (a current den-
sity) confined to a volume V. The frequency domain represen-
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tation of this source is obtained by taking the temporal Fourier
transform of 7 (r, t), which gives the spectral current density

Z/](rf

where 1+ = /—1. In the remainder of this section and in the next
one, the focus will be on spatial electromagnetic information
for a given frequency f so that for notational simplicity we will
suppress the f dependence, e.g., we will use J(r) in place of
J(r, f), with the understanding that all quantities depend on
the frequency f. This source J(r) is assumed to belong to the
Hilbert space X = L?(Vr) of square integrable functions of
support Vi with inner product defined by

(3|3 E/V J*(r) - I (v)d>r

)87227rftdt

where * over a quantity means its complex conjugate.

The electric field E(r) is measured in a volume V. This mea-
sured field belongs to the Hilbert space Y = L?(Vg) with inner
product defined by

<E|E’)yE/V E*(r) - E'(r)d’r

B. Singular System Representation of the Source-to-Field
Mapping

The measured field E is given by

(PJ) (r) = Iy, (r)

Jvp

B(r) = G(r,x') - I d (1)
where we have introduced the radiation operator P : X — ),
Iy, (r) is an indicator function parameterized by Vg with value
lifr € Vg or0if r ¢ Vg, and G(r,r’) represents the dyadic
Green function satisfying
V x V x G(r,r') — E*G(r,v) = 27 fuoI(r — r')

where I is the identity dyadic, § is Dirac’s delta function, and
k=2xf V/Io€o is the wavenumber where ¢ is the free-space
permittivity and 1 is the free-space permeability. For finite and
disjoint transmission and reception volumes, the Green function
kernel in (1) is square integrable [4], [18], [41], [42] so that the
operator P is compact and can be represented via the singular
value decomposition (SVD) [41]-[43].

The SVD of P can be obtained from the eigendecomposition
of the associated self-adjoint operator [41, pp. 237,238], [42,
pp- 258259]PPf : Y — Y where PT: Y — X represents the
adjoint of P defined by (PJ|E),, = (JIPTE) , so that

(P'E) (r) E(r)d*. ()

= Iy, (r) G*(r',r) -

‘/,R

Let u,(r) be an eigenfunction of the operator PP (and re-
ceiver-side singular function of P), then

(PPTu,) (r) = (0a) ua(r) 3)
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where o, is the respective singular value. The corresponding
transmitter-side singular function is given by [41]

(PTua) (r)

O

“)

vao(r) =

Expanding the kernel in (1) in terms of the singular functions so
that

Iy, (r)G(r,v') Iy, (r Zaaua (r) (%)
and defining
Ao = (un|E>y (6)
and
ba = <Va|J>X7 @)

yields the alternative (singular system or diagonalizing) repre-
sentation of (1)

Ao = Tabg. (8)

C. SVD for a Spherical Scanning Geometry in Free Space

Now consider the particular case of a spherical scanning ge-
ometry in free space where the source J(r) is confined to the
spherical volume V; = {r € R? : r = |r| < a} and where the
electric field E(r) is measured in a spherical scanning surface
Vi = {r € R® : r = b} of radius b concentric to the source.
This geometry is of interest for antennas (e.g., one can envision
a spherical near-field scanning setup to test and compare an-
tennas informationally) and enables the analytical calculation
of the singular system of P by means of spherical wavefunction
expansions.

1) The Multipole Expansion: In free space, the temporal
Fourier transform of the measured field is given from the multi-
pole expansion [44], [45] by

= Iv,( Z 5 1,m A 1,m(T) ©)]
G.lm
where >, ., = Z§:1 Y021 Y e p» Where
Aqpm(r) =V x [hf (kr)Ym(T)] (10)
and
Ao m(r) = khf (kr)Ym(F) (1)

are the electric and magnetic multipole fields, respectively,
where h;" is the spherical Hankel function of the first kind
(corresponding to outgoing waves) and order [, and Y ,,, is the
vector spherical harmonic of degree [ and order m defined by
[46], [47]

Yl,m(f-)

= LY, (%) (12)
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where L = —ur x V (the angular momentum operator), & =
(0, ¢) represents the direction of r, and Y) ,,, () represents the
spherical harmonics [48, p. 787]. The expansion coefficients
@j.1,m in (9) are given by

j1m = (BjimlJ) y (13)
where the spherical wave functions B;; ,,, are defined by
Buin(r) = =y e ()9 % L) Yo )] (14)
and
Batm(r) = — s T (k) Yo (8 (19)
" I(1+1) ’

where 7 is the free-space impedance (=
the spherical Bessel function of order /.

The spherical wave functions By ; ,,, and B, ; ,,, obey the or-
thogonality relations [see [45, Eq. (17)]]

377 ohms), and j; is

<Bj,l,m |Bj/,l’m,>X = ||B],l,m ||i} Ej’j/ 5[71’ 5m7m/ (16)
where here and henceforth || - || denotes Euclidean norm (so
that ||Bj71,m||i, = (Bj,1;,m|Bj,i,m) 1), Where 6. . denotes the
Kronecker delta and where, see (17) at the bottom of the page.

Similarly, it is not hard to show by borrowing from [49, Eqs.
(5), (13), (16)], including the orthogonality property of the
vector functions Y] ,,, (%), Y. (E), and £ x Y., (T) [50, pp.
1898-1901] as well as the recurrence relations for A", that the
multipole fields, A ; ., and Ay, are also orthogonal in the
sense that

2
(AjimlAjrm)y = Ajimlly 655600 0mme — (18)

where [see (19) at the bottom of the page] and
1Azl = UL+ 1)R20? B3 (kD). (20)

2) Singular System Representation: Using (9) and (13), the
kernel of P in (1) is found to be given by (5) with « substituted
by j,1,m and
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B '.l,m(r)
vj,lym(r) = IVT (r)m (22)
VELRU I
and
o1 = 1By tmll e 1Al - (23)

The results above hold for both near and far fields. In the special
far-field case, one can use the large-argument approximation
hi(z) ~ (- )" Jze [48, Eq. (11. 16()a)] to arrive from (19)
and (20) at the approximation || A ;s .|| y = (I + 1) which in
turn yields the far-field singular values

[al(j)}? =1+

The far-field singular values in (24) are well known to decay
rapidly for [ R ka [4], [43], [45], [51]—-[53]. Since, as discussed
in (9), 7 takes values 1 and 2, while m takes integer values from
—I to I, for each index [ there are 2(2/ + 1) singular values so
that an estimate of the NDF or information content [4] of the far
field is NDF =~ 2ka(ka + 2). On the other hand, this rule of
thumb does not hold in the near zone, where we must use the
general result (23).

Replacing the index o — 7,1, m in (8) yields the representa-
tion

1) [|Bjimll% - (24)

Vi=1,2; [=1,2,...
I—1,1.

_
@jtm =07 bj1m

m=—1,—1+1,..., (25)

It is important to emphasize that the j, [, m indexes represent
spatial modes that are physically differentiable (separable) due
to the orthogonality of the functions u; ; ,,, and v;; , [via (21)
and (22) or, alternatively, (16) and (18)] so they correspond to
an effective number of transmitter and receiver modes that are
potentially communicable between the antenna or scatterer of
spatial dimension a and a receiver outside the antenna. Also
note that (without further information) in view of (7) and (8)
only the scalar quantities b;; ,, associated to a given source can
be known about that source, i.e., only certain projections of the
source onto the space of functions u; ; ,, (r), in particular, can be
measured from the received signals. Hence, we will formulate
next the communication problem in terms of the quantity b;; .

_ Ajim(r) as containing all the information about the transmitter state (as
W m(r) =Iy, (r)—2—* 21
b A Ly determined by the source J(r)) that is in principle recoverable
2 2
1Bl = 575 {0 = D IBoisnle + 1+ 2) Bassa
(nk)?a®
IB2,1,m 1% = 20T 1 1y Vi (k) =i (ka)jisa (ko). a7
2 2 2 + 2 + kb + + 2

1ALt mlly = P41 B (k)] + 10+ 1) | 257 (kD) + 5= (21 (kD) — (L4 1A, (kD) (19)
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from the measurement of the receiver signal. No further infor-
mation or components of this source can be estimated from
the exterior field measurements alone, so the communication
problem reduces to the mapping dictated (in singular system
representation) by (25).

III. SPACE ELECTROMAGNETIC INFORMATION CAPACITY

In this section the discrete representation of (1) in terms of an
infinite number of spatial modes in (25) is interpreted as a set
of parallel communication channels where each output a;;
is related to the input b;; ,,, probabilistically due to the pres-
ence of noise (to be added in the following). The input modes
b;.1,m represent random variables containing the information to
be transmitted, therefore, the source J(r) is characterized by a
set of random states or currents that are to be transmitted to the
output E(r) in the presence of noise.

A. Noise Modeling

In practice, errors are introduced to the measurements mainly
from imperfect antenna location, distortion of the field due to the
test equipment, imprecise measurements of the fields, and nu-
merical approximations [54]. Since most errors are independent
and additive [54], a natural choice for the noise model is that of a
white Gaussian random process n(r) defined by the usual prop-
erty that for any L?(Vg) function f(r) the projection (f|n) is
a zero mean Gaussian random variable with variance Ng [39,
p- 365]. In particular, if n(r) is expanded in terms of a set of
orthonormal functions then the resulting set of coefficients are
independent [39, p. 367]. Thus, adding this noise to the formu-
lation in Section II (where E becomes E + n) one readily finds
that the channel model in (8) takes the revised form

@j.1m :Jl(])bj,l,m +n50m Vi=1,2

I=1,2,...; m=—l—l+1,....1—1,1. (26)
where

Njlm = (uj717m|n)y (27)
and B [0ty irme] = Nodjjr0008mm [V?] where Vin-

dicates volts and E [-] indicates the expected value.

In some situations it may be convenient to modify the
noise to allow different variances for different channels so
that £ n;l;mnj/,y_’m/ = jyl,méjyj/él_,pémym/. The develop-
ments that follow still apply in this case after the replacement
No — Nj1,m. Also, for the case of colored noise where the set
of coefficients n;; ,, have an arbitrary correlation matrix, an
alternative procedure involving the eigendecomposition of the
correlation matrix of the noise can be employed as described in
[20, Ch. 9].

B. Capacity Constraints and Connection to Physical
Quantities

One of the most important and common constraints for ca-
pacity calculations is the bounding of the square of the L? norm
of the source which bounds the current levels and, therefore, the
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associated ohmic losses and the level of superdirectivity of the
antenna [31]. This quantity is commonly known as the (func-
tional) energy of the source whether it is directly related to the
physical energy or not [41, p. 98]. For a deterministic source
J(r) it is given by

A2
2 = A TP d*r =" [bjaml® {E} (28)

7lm

&=1J]

where A indicates amperes and m meters. Bounding this quan-
tity restricts the sources so that they are square integrable. At
the same time, this bound restricts the amount of power radiated
by the antenna since integral operators with square integrable
kernels, as in the present radiation analysis, are bounded
[41]. An insightful way of visualizing this in the framework
of linear inversion theory is as follows. Having a bounded
source L2 norm requires satisfying the Picard condition

N2
St a5l / [a,(”] < oo [41, Eq. (10.96)]. However,

2 @] 2 2
0 > Yiumlaiiml/[0] > 10k S liiml
where 0,.x denotes the largest of the singular values O'I(J )
so that the norm of the field (at the spherical surface) is also
bounded. By referring to (31) where it is shown that the radiated
power is equal to the L? norm of the far field (apart from a
constant factor) we conclude that the radiated power is also
bounded.

Mathematically, the source L? norm is the electromagnetic
counterpart of the bounded power constraint of temporal
channel communication theory (see, e.g., [39, Ch. 8]) but for
antennas it does not represent the average radiated power which
is calculated from Poynting’s theorem [55, Eq. (4.21)] and is
generally given in terms of the multipole moments by [51, Eq.
(4.24)]

>

1
P=y ST+ 1) laggml (29)
7,l.m
1
=5 > U+ 1) B mll 1b5.0ml” (30)
n 7,l.m
1 NOIE 2
277]%[01 | sl W] (D)
@1*
l

where here and henceforth (& denotes the far-field sin-
gular values in (24) and W indicates watts. Note, however, that
this constraint alone is not enough to find realistic solutions
since bounding the radiated power will not necessarily lead to a
bounded source L? norm in (28) (due to the decaying behavior
of the singular values since 61(]) — 0as! — oo; see, e.g., [43,
p- 41] and [41, p. 252]).

C. Space Capacity With Multiple Constraints

Consider the parallel channels in (26) where n; ; ,,, represents
white Gaussian noise with variance N, and where the L2 norm
of the source is constrained to &, i.e.

Z E [|bj7l;7n|2] = Z Ejim <&

J.lm 7,lm

(32)
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where £, = E [|b]-,l,m|2} and the radiated power is con-
strained to P, i.e.

1

12
o [&,(”} Eitm —P <0 (33)

Jlm

where

Eitm > 0. (34)

The capacity is obtained from maximizing the mutual infor-
mation [20] between the input b;; ,, and the output a;; ,,, by
finding the optimal probability distribution for the set {b;; m }.
As is well known [19], [20], for uncorrelated Gaussian noise
the mutual information is maximized when the input probability
distribution is an uncorrelated Gaussian distribution with vari-
ance &; 1 .. Thus, the capacity is obtained by solving the opti-
mization problem [56, p. 182]

@1?
T Etm [0”]
max ogy | 1 + ————
lm NO

Eji,m 35)

71,

subject to (32)—(34).

A dual optimization problem associated to this capacity cal-

culation can be found by means of the Lagrange multipliers

technique [57, p.176] where the Lagrangian function is given
by

g0 [o@]?
L= -3 log, |14 L0 N[;T’ |

alm

+ A Z Eitm—E&

7, lm

ISHERS [&}”]Zej,,m e

o (36)

7,l,m

and the necessary and sufficient conditions for optimality are
given by the Kuhn-Tucker theorem [57, p. 138]

logze 1 ~(5) 2
22—+ M+ |8 =0 (3
ﬁJrgj,l,m ' 2277[ : ]
i
> Eum—E<0 (38)
7,l,m
1 12
o > 6] Eum-P <0 (39
7,lm
A >0 (40)
A2 20 (41
MDD Eam—E] =0 (42
7,lm
1 NIk
Ao | =— P Eim — P | =0, 43
2 277]%[0[ } glm “3)
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Without loss of generality from this point forward we will in-
clude the factor log, e in the Lagrange multipliers so that A\; —
A1/ log, e and Ao — Ao/ log, €.
From (37) the optimal source L? norm assignment is
+
4 1 Ny

R VY I

(44)

where (-)T = max(0,-). Replacing équ,m in (35) yields the
space capacity with constraints in the source L? norm and radi-
ated power
12
"] 1

C=>" |log .
2 Ny A _{_)\2% [6Z(J):|2

+

(45)

alm

where the multipliers A\; and )5 are chosen to agree with condi-
tions (38)—(43). Special cases and illustrations of these general
results will be given later, but next we wish to make a few re-
marks on four key themes that are of much interest to us, as both
application and motivation aspects of this effort, and that apply
to both the present space-information analysis as well as the
more general broadband-spatio—temporal information analysis
of Section III-C-I. These aspects are: 1) information-theoretic
estimation of NDF of electromagnetic radiation and propaga-
tion channels; 2) antenna superdirectivity control via L? norm
constraint; 3) near-to-far-field transition from the point of view
of Shannon information; and 4) applicability to both transmit
and receive configurations (informational reciprocity).

1) Number of Degrees of Freedom: In this paper, the NDF
is defined as the number of channels with L2 norm Ejim in
(44) greater than zero. The values of the Lagrange multipliers A\q
and Ao that minimize the Lagrangian in (36) assign the available
source L2 norm & to the infinite channels in an optimal way, i.e.,
depending on the channel gains defined by the singular values.
Because of the finite amount of resources, only a finite number
of channels, out of the infinite number originally available, are
used. This number (of effective wave modes that can be commu-
nicated) depends on the constraint level of the source L2 norm
&, on the constraint in the radiated power P, on the noise vari-
ance Ny, and on the behavior of the singular values which in
turn depends on the geometry of the system. Our analysis in
(44) and associated expressions shows that it is not necessary
to artificially truncate the number of channels a priori, as has
been done, however, in the majority of past works in this area
[4], [17], [18], [34], [36], [37], [40]. Instead, the finite number
of channels appears naturally as a byproduct of maximizing the
capacity. This definition of the NDF differs from the commonly
used one in linear inverse problems where the NDF is associ-
ated to the number of “significant” singular values. This last
definition is particularly appropriate for the case of rank defi-
cient operators where the corresponding singular values have
a step-like behavior with a clear gap between large and small
singular values. For example, as follows from our discussion in
(24), for large antennas and observation regions in the far zone
of the antenna the NDF (= 2ka(ka + 2)) is relatively well de-
fined and independent of the noise level (see, e.g., [37], [58]). In

Authorized licensed use limited to: Princeton University. Downloaded on August 16, 2009 at 22:39 from IEEE Xplore. Restrictions apply.



3476
—~ 30 ———
4‘2‘0 - i
i || ——sNR=10dB
: e e [ SNR=13 dB
B e e SNR=16 dB
o /A
g O — - - ~SNR=18 dB
=N
o]
o 0
0 200 400 600 800 1000
Q
20
15 [ 1[——SsNR=10dB
=S [FSUSIISIII” A | SIS SNR=13 dB
210 5 - SNR=16 dB
sl - - ~SNR=18 dB
0
0 200 400 600 800 1000

A~

Q

Fig. 1. Capacity and NDF as a function of the ratio Q=¢ / P for a fixed power
P =1 mW and for different levels of the SNR for a source with ka = 0.38
and concentric spherical receiver with b = 2 m.

other cases, however, the singular values decay more gradually
without a clear gap (e.g., for the case of small antennas or ob-
servation regions in the near zone), making it necessary to use
regularization techniques which usually involve the noise level,
signal energy, and other factors [41]. For example, Xu and Han-
swamy [38] considered a definition of the NDF dependent of the
noise levels and the source L? norm in the context of an elec-
tromagnetic communication system. In the present paper, we
follow this more general philosophy of not truncating a priori
the NDF, and instead let the very calculation of capacity reveal
the NDF as function of the physically motivated constraints of
power and source L2 norm, the noise level, and the system ge-
ometry (including the near-field case).

2) Superdirectivity: For a given maximum allowed radiated
power, constraining the L? norm of the source has the effect of
controlling the level of superdirectivity or supergain of the an-
tenna. In fact, a common metric of the superdirectivity is given
by the geometric Q factor (see, e.g., [31], and similar factors
used in antenna synthesis [59]-[61]) which is proportional to
the ratio between source L2 norm and radiated power.

For example, consider a source with ka = 0.38 and a concen-
tric spherical receiver with b = 2 m. Fig. 1 shows the behavior
of the capacity and NDF as a function of the ratio Q =£&/P
for a fixed power P = 1 mW and for different levels of the
signal-to-noise ratio (SNR) defined as

2nP
SNR = —.
No

(46)

The plot shows that capacity and NDF increase as the ratio Q
(the source L? norm) increases, as expected, but also a plateau
is eventually reached beyond which further increase is negli-
gible. The same general behavior is illustrated from a comple-
mentary point of view in Fig. 2, where we consider different
values of the radiated power constraint P and a fixed variance
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0.25 A?/m, a radiated power constraint P = 1 mW, and a SNR = 10 dB.
The concentric spherical receiver was located at b = 2 m.

Ny = 0.038 V2 (for this variance the SNR is between 10 and
17 dB depending on the values of the power P).

It is interesting to note that the L2 norm assignment is no
longer as obvious as in the case with only the L? norm con-
straint where the channels with the larger gains (larger singular
values) are always the optimal to use. Due to the interplay be-
tween power and source 2 norm constraints this may no longer
be the case. For example, Fig. 3 shows the L? norm assign-
ment for the system in the previous example with @ = 100,
P = 1 mW, and SNR = 10 dB. In this case, channels with
a lower gain are assigned most of the available 1.2 norm while
the channels with higher gain are assigned most of the radiated
power.

3) Near- to Far-Field Transition: An important factor that
affects the capacity and NDF is the distance between receiver
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Fig. 4. Space capacity and NDF for a source of radius ¢ = 0.02 m (ka =
0.38) as a function of the receiver radius b for several values of the SNR. Also
shown in the plot are the two relevant field regions (see discussion in text).

and source. This behavior arises from the factor ||Aj7l,m||§] of
the singular values given by (19) and (20) which depends on the
receiver radius b. The plot in Fig. 4 shows, for the same source
with ka = 0.38, the capacity and the NDF corresponding as a
function of the receiver distance b for several values of the ratio
SNR. In the plot the outer boundary of the reactive near-field
region is marked as a dotted line at a distance of \/27 from
the surface of the antenna (a usual estimate for small radia-
tors [62]) where A is the wavelength of the radiation. Fig. 5
shows the same plot for a larger source (¢ = 0.4 m) with
ka = 7.54 where the three relevant field regions have been in-
dicated. The outer boundary of the reactive near-field region is
taken as 0.62+/(2a)3 /) and the outer boundary of the radiating
near-field region is taken as 2(2a)?/)\ [62]. For both sources,
the NDF and capacity decrease rapidly, converging to the corre-
sponding far-field values as the receiver distance b approximates
the outer boundary of the reactive near-field region. In partic-
ular, in both cases the NDF converges to a minimum value as
the receiver exits the reactive near-field region.

4) Receive Mode: Itisimportant to mention that the previous
developments also apply for a receiver antenna surrounded by a
spherical transmitter if the medium is such that the reciprocity
condition (G(r,r’) = G(r’,r)) holds, which is the case for
free space. In particular, it can be shown that for both situations
(transmit versus receive) the singular values are the same im-
plying that the capacity given by (45) also remains unchanged.
This remark holds for all the capacity calculations of this paper.

D. Space Capacity With Radiated Power Constraint

Consider now having an unconstrained source L2 norm,
which can be shown to correspond to using A\; = 0 in (36). The
capacity expression in (45) then reduces to

2n I:O'l(j):| ’

[67] " Nods

+
bits
use

} (47)

3477

600 —
—~ :
"‘3_? 400 ‘Reactive  Radiating : 1 | ——SNR=30 dB
o < near-field near-field : Far-fleld
= :region region region | SNR=20 dB
S 20 : : ]
g : S SNR=10 dB
3 :
O
0
0
200
<«<—Reactive :
:near-field ff:gri_::_'eld
150 \\ .regen 5 —— SNR=30 dB
= Radiating
a : near-fleld [ [ SNR=20 dB
Z T region :
1007 i e 1 |- SNR=10 dB
O SO
50
0 1 2 3 4 5
b (m)

Fig. 5. Space capacity and NDF for a source of radius 0.4 m (ka = 7.54) as
a function of the receiver radius b for several values of the SNR. Also shown in
the plot are the three relevant field regions (see discussion in text).

where )5 satisfies

Z i_w <P

bt )\2 27] [Ul(].):| 2 (48)

Since the far-field singular values &l(j ) decrease more rapidly
©)

than the near-field singular values o,”” the capacity in (47) will
not converge in general. This unbounded behavior of the ca-
pacity due to unconstrained superdirectivity has been reported
before in [28] and [31].

A special situation occurs when the receiver is in the far-field
region where ‘71(] ) — &l(] ) so that the singular values in (47) and
(48) cancel, yielding a capacity

. 2nP\  2nP
O lim Nlog, (1 + N0N> -

that is independent of the singular values al(j ) and that increases
linearly with the SNR. This comes at the expense of a source
with L? norm

l

2 N
E= 1
LLDIPIPS

2nP

[N +250] >

that is unbounded due to the exponentially decaying behavior of
the singular values for large [ [4], [43], [45], [63]. Note that the
last result in (49) occurs because of the particular geometry of
the receiver and that this may not be the case for more arbitrary
configurations as illustrated, for example, in [28].
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E. Space Capacity With Source L? Norm Constraint

Consider now the complementary situation where only the
source L? norm is directly bounded, which corresponds to A =
0. The capacity expression in (45) reduces to

]

NO)\I

C=>" |log,

alm

(D

where \; satisfies
+

Zl No

N, T A2
7,lm )\1 |:0'l(']):|

and can be computed via the well-known procedure called
“water-filling” [20] or “water-pouring” [64].

(52)

IV. SPACE-TIME ELECTROMAGNETIC INFORMATION CAPACITY

In this section, we consider the practical scenario of (tem-
porally) bandlimited signals motivated by the requirement of
limiting the bandwidth of transmitted signals (to avoid inter-
ferences, follow regulations, and so on). It will be henceforth
assumed that this bandwidth is within the inherent bandwidth
limitations of practical antenna systems. However, we shall not
dwell on particular antenna matching networks and the Bode-
Fano matching theory that has already been treated in the an-
tenna context in [32], [33], [65]. Our focus is the first principles
source-to-field channel within a rather broad context pertinent
to wideband radiating, propagating and even scattering systems.

In this section, the previous developments for time-harmonic
sources operating at frequency f are extended to time-varying
sources. To address this bandlimited electromagnetic channel
case, we derive in the following the space-time generalization,
within the particular electromagnetic physical framework, of
the classical information theory for temporally bandlimited
channels developed by Shannon [19] and elaborated in detail
also by Gallager [39]. Methodologically, the particular approach
adopted next borrows from the time domain treatment of ban-
dlimited channels by Gallager [39]. The main ingredients of
the theory are developed first for the particular case of a source
that radiates during the finite time period (—7/2,7/2) an
electric field that the receiver measures at all times (see Fig. 6).
The bandlimitation constraint is modeled by a bandpass filter
of bandwidth W at the transmitter, that will be implemented
after the companion time limitation consisting on masking
the temporal transmit signal within the window (—7'/2,T/2).
Later we consider the more general scenario of transmitter and
receiver systems that are time limited such that the transmitter
operates (is turned on) during a time window (—7/2,7T/2)
of duration 7', while the receiver operates (captures electro-
magnetic signals) during a time window (73,7}). Given that
in this theory the transmitter and receiver are both space and
time limited (the spatial part is the finite size constraint), this
is an information theory for space-limited, time-limited, and
essentially bandlimited electromagnetic channels. Finally, the
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same developments for arbitrary 7', T3, and T}, will naturally
render the respective information capacity for bandlimited
electromagnetic systems by means of a limiting procedure
involving T5 = —-T/2, Ty = T/2, T — .

A. Spatio-Temporal Analysis

As in Section II, for each frequency f the source J(r, f) can
be represented in terms of a set of equivalent independent cir-
cuits [33], [34], [66] representing each of the spherical modes in
the multipole expansion of the electric field in (9). This spher-
ical expansion leads to an infinite set of waveforms of the form

a1 (F) =0 (Nbjam(f) Vi=1,2;

l1=12,...; m=—-l,—-1+1,...,1-1,1

where o\, (f) = o/ (F)Iw(f). o (f) is given by (23),

Iw (f) = 1for f in the band of interest, a;; »(f) is defined in
(6), and b; ; ,(f) is defined in (7).

Applying the inverse Fourier transform so that, for example,

ajim(t) = ffooo aj1.m(f)e?™tdf and considering the pres-

ence of white Gaussian noise at the receiver we find the model

i () = / byt (GGt = ) + i1 (1)
Vi=1,2; 1=12,...;

m=—1,~l+1,....1—1,1; t€R (53)

where each spatial model j, [, m represents a continuous-time
random process (waveform). For simplicity, all random pro-
cesses are assumed wide-sense stationary [67] so that the
autocorrelation of the input signal b; ;. (t) is R (1) =

bj.im
E [I;Jlm(f)l;’; 1t — T)] and the autocorrelation of the noise

signal . (1) i R, (7) = F [ (8)70, (= 7)| =
Noé(7). Tt is also assumed that the noise signals corre-
sponding to different spatial modes are independent so that
E [ﬁj,l,m(t)ﬁ;f,7l,7m,(t—T)} = No8(7)8; ;18106 mm. It can

be shown from (17), (19), (20) and (23) that o\’ (f) is a real
and even function with respect to the frequency, so that the
inverse Fourier transform is also real.

B. Space-Time Capacity With Source L? Norm Constraint

We will first consider the case of a single constraint in the
source L? norm in detail. Then we will show the corresponding
results for the case of a radiated power constraint and for the
simultaneous constraining of the source L? norm and radiated
power.

1) Finite Transmission Window: Consider a source that ra-
diates only during a finite time period —7'/2 < 7 < T'/2 while
the received signal is measured at all times. As shown in Fig. 6,
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this input time limitation can be modeled by defining the indi-
cator function

1 ZL<r<T
Lrpaa(r) = {0 0t2her_wise_ ’

and the auxiliary time-variant filter [39, Sec. 8.4]
hia(t,m) = 6@yt = D) gy )(7). (54)

The singular functions of the linear mapping associated to the
filter h; ;(t, 7) are found from the integral equations

/Hj,l(ThT2)¢j,z,m,k(’r2)d7’2 = Njimi)? djimu() (55)
and

/¢j,l,m,k(7)fbj,l(t77)dT = Xjtm k0 1m,k(t) (56)

where ¢ .m x(t) and 6 m 1 (t) are the singular functions,
Aj,i.m,k are the singular values, and

Hya(mom) = / By a(t )byt 7a)dt.
In view of (54)
Hji(r1,7m2) = 1_1/2,m/2(T1)I_1/2,7/2(T2)
X / GNPt — T0)GW) (t — T2)dt
=1_rso1/2(T1)_1/2,7/2(T2)

X/ @] et 57

An important property of the singular values A;; », » and the
singular functions ¢, ; 1 (t) is that they are the solution of the
maximization problem [39, Eq.(8.4.28)]

2
Njtmi]” = mnax / hj(t, 7)z(T)dr (58)
while the singular functions 6, ; m «(t) are the solution to
2
Nt i] = max /hg‘,z(tﬁ)y(f/)dt (59)
ull=

The orthonormal functions ¢; ; ., . are the set of time-limited
functions [which follows from (55) and (57)] whose output to
the propagation channel has the largest L? norm [following from
(58)] and, hence, are essentially bandlimited. Therefore, they are
the ideal expansion functions for the input signals b; ; ,, (¢). On
the other hand, the orthonormal functions 6 ,,, . are the set of
bandlimited functions [following from (56)] with the largest L?
norm concentrated in the time interval (—7"/2,T'/2) [following
from (59)]. Thus, the received signal @; ; ,,, will be represented
by means of this set of functions.

The expansion in terms of the singular functions ¢; ; % and
6 1,m.% yields the discrete independent parallel Gaussian chan-
nels

@jt,mk = Ajm kb tm ke + 10 0m k
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Vi=1,21=1,2,...;

m=—1,—l+1,...,01—-1;k=1,2,.... (60)

where a;1.mk = (05.0m.k: G5m)s bj.tm ke = (B50m ks bjtim)»
and njimpr = (050mk 750m) and where (f,g) =
S (t)g(t)dt.

The L? norm constraint of the source 7 (r, ¢) is given by

S > EIbjumil’] < TE.

g lm k=1

(61)

Letting the capacity for a time interval 7" be denoted by Cr
and following the procedure in Section III-E it is found that

.- Nk’ Eamon
Cr = Z Zlog2 1+ ' N , (62)

7 l,m k=1

where
N +
Eitmp=v- —— (63)
’ ( Nt
with v selected so that
1 > N, *
E=7 v — | (64)
P mer)

In general, the singular values \;;,, 5 are determined by
solving the eigenvalue problem shown in (55). However, an im-
portant special case occurs if aé{,? ; is flat in the frequency band of
interest. In this case the functions 6; ; ,,, 1 in (56) are essentially
given by the prolate spheroidal wavefunctions [9], [39] (as can
be shown by considering the lowpass equivalent of the system
[68, App. B] so that the band of interest becomes [—W /2, W/2])
which are the bandlimited functions with the largest L? norm in
the transmission time window. Furthermore, the singular values
Aji,m.k are essentially a product of two gains: a spatial gain
given by UE,{,?I (which depends on the spatial limitation in size
of the transmitter and receiver) and a temporal gain associated
to the prolate spheroidal wave functions (which is a function of
the time-frequency product WT [9, p. 45]).

The NDF is obtained from the number of channels with
nonzero functional energy éjJ’m’ r in (63) and represents the
number of discrete spatio—temporal modes that are relevant for
the current geometry, constraints, and noise level. As an illus-
tration consider a source with ka = 0.38 operating at a central
frequency f = 900 MHz and a narrow bandwidth such that the
quantities JMJ,)Z are essentially constant (plot not shown) and the
previous apprbximation is applicable. Fig. 7 shows the capacity
in (62) and the NDF as a function of the SNR parameterized
by the parameter ¢, = wWT/2. As expected, increasing
the time-bandwidth product (WT) increases the number of
spatio—temporal degrees of freedom and the capacity.

These results can also shed light on the near to far field transi-
tion for time-domain fields. For example, consider the previous
source with W = 25 KHz, and a SNR = 10 dB. Fig. 8 shows
the capacity and NDF as a function of the receiver distance b
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Fig. 8. Capacity and NDF versus receiver distance b for different values of the
parameter ¢, = mW1T'/2 for a source with ka = 0.38, W = 25 KHz, and a
SNR = 10 dB.

for several values of the parameter c,,. The NDF converges to a
minimum value (which is a sign of leaving the reactive near-field
region in the time-harmonic case as shown in Figs. 4 and 5) at
a shorter distance for smaller values of the parameter ¢, which
measures the time-bandwidth product. For reference, we also
include the reactive region boundary for the central frequency
of 900 MHz.

Another important aspect that can be illustrated by means of
this analysis is the effect of the length of the transmission time 7'
on the capacity per unit time C /T Intuitively, having a larger
transmission time should allow the construction of more effi-
cient coding schemes. Fig. 9 shows, for a source with ka = 0.38
operating at a central frequency f = 900 MHz, a fixed and
narrow bandwidth of 25 KHz, and a source .2 norm constraint
of £ = 0.25 A?/m the quantity Cr/T as a function of the
transmission time as measured by means of the time-bandwidth
product ¢, = wWT/2. The plot shows that the capacity in
bits/s increases with the transmission time 7’ converging asymp-
totically to a constant. Also shown in the figure is the NDF
which, for large c,, increases almost linearly with the transmis-
sion time.

2) Finite Transmission and Reception Windows: Consider
now limiting the transmission time to the finite time period
—T/2 < 7 < T/2 while measuring the received signal for
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the finite time period 73 < ¢t < Tj. As before this situation is
modeled by means of an auxiliary filter given by

ha(t7) = Tr, ry (D504t = 1) _zporpa(r)  (69)
and the signals are expanded in terms of the singular system of
the linear mapping associated to (65). In this case the singular
functions ¢ and 6 are both time-limited and essentially bandlim-
ited. The capacity for this space-limited, time-limited, and es-
sentially bandlimited system can be found from (62) and (63)
where now A; 1 ., represents the singular values of the linear
mapping associated to h; (¢, 7) in (65).

3) Bandlimited Channel: As shown in Fig. 9 the capacity
per unit time converges to a constant value as the transmission
time increases. This value can be found by means of the fol-
lowing procedure. In the previous development let 75 = —7/2,
T, = T/2,and T — oo and define the capacity in bits/s as
C = limy_ o 1/TCr [19]. Then substituting (63) in (62) and
applying the Toeplitz distribution theorem for continuous pro-
cesses ([39, Lemma 8.5.7] or [64, Theorem C.3]) yields

[ ) ]2 -
o (f) bits
C = Z /W log, I/T df [T] (66)
7,l,m
where v is selected so that
+

(67)

EzZ/ yo Do df

W\ [Pw)

which are the spatio—temporal version of the well-known
expressions for the capacity of bandlimited waveform channels
with a constraint in source 2 norm [compare, e.g., to [39,
Egs. (8.5.72), (8.5.73)] involving temporal channels and with
[33, Egs. (A.9), (A.10)] involving spatio—temporal channels in
the framework of orthogonal frequency-division multiplexing
(OFDM)].
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C. Space-Time Capacity With Radiated Power Constraint

The radiated power constraint for a transmission time window
T is given by

2 2 [

],l,mk 1

E[|bj1mxl’] <TP (68

where 5\]-_,1,,”, % are the singular values in (56) corresponding to
a receiver located in the far zone.

Following a procedure analogous to that of the time-harmonic
counterpart, Section III-D, it is found that the space-limited and
time-limited capacity with a radiated power constraint is given
by

COr = Z Z] ,/M {%} (69)
j,l,m k=1 I:)\j’l’m’k:l NO 1se

where v is chosen so that
+
1 Z Z _ AmaNo ) _
j,lmk 1 277A],lmk

Letting T — oo yields the space-limited and bandlimited ca-
pacity

C= Z/log v

7,l,m

OYPNE
f i
—[ o) I
Gy A
where v is chosen so that
59 (f +
)No
—_ df = P.
J;n/w ( 27]U(J)(f)) f

Similarly to the time-harmonic case discussed in Section III-D,
the capacity in (70) depends on the ratio between near- and

3481

far-field singular values. Since the far-field singular values
decay faster this expression will not converge in general
showing (again) that the radiated power constraint alone is
not sufficient. However, for the particular case of a receiver
in the far-field region the spatio-temporal channels become
independent of the singular values crl(] ) (f) and all channels are
assigned the same power, yielding a capacity

2nP
NoWN >
This expression shows that the effect of the increase in the
number of channels due to an unbounded source L? norm is
to multiply the available bandwidth by the NDF so that in the
limit as the NDF goes to infinity we obtain the well-known
expression for the capacity of a channel with infinite bandwidth
(see, e.g., [20, p. 250]). An approach to keep the L? norm
of the source under control is to artificially limit the NDF

to the estimate mentioned earlier in relation to (24), namely,
NDF = 2ka(ka + 2), so that

2nP
No log, (e).

C= A}im NW log, < (71)

C = 2ka(ka + 2) log, (1 + (72)

L
Ngka(ka + 2) ’

An alternative approach is developed next wherein one con-
siders the source L2 norm and radiated power constraints si-
multaneously.

D. Space-Time Capacity With Multiple Constraints

For a source L? norm constraint of £ and a power con-
straint of P the methods in Sections III-C and IV-B lead to
the time-limited and space-limited capacity shown in (73) at
the bottom of the page, where A; and A\ are two nonnegative
constants chosen to satisfy the constraints (61) and (68) and
(37), (42), and (43) with the replacements al< 2N Ajlm ks
69 = Nimrs Eitm — Elbjimil?], € — TE, and
Zj,l,m - Ej,l,m Zk:l

Letting T" — oo yields the bandlimited and space-limited
capacity shown in (74) at the bottom of the page where A\; and

+

o . 1 bits

Cr = Z logz[ j’l]’v ¢l 2 {use} (73)
j,lm k=1 0 AL+ Ag 27 I:/\JJ m,ki|
+
(J)(f) 2 .

1 bits

A de ™

J.lm

AL+ )\2% [&l(j)(f)]z
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Fig. 10. Capacity in bits/s versus W for a source with ka = 0.38, ) = 0.1,
and different values of the SNR.

Ao are two nonnegative constants chosen to satisfy (38) and (39)
and (42) and (43) with

+

Eim(f) = ! - No

M 0] [oP0)]

(75)
and the replacements »_,; . i Jy and Ejim —
E.1.m(f). Expression (74) represents the spatio-temporal ca-
pacity for bandlimited channels with bandwidth W under con-
straints in source L? norm and radiated power. For example,
Fig. 10 shows the capacity in bits/s versus the bandwidth W for
a source with ka = 0.38, @ = 0.1, and different values of the
SNR.

E. Broadband Versus Narrowband Information

We conclude this section by discussing how the more gen-
eral time-domain theory of this section relates to the particular
time-harmonic theory given earlier (Section III). For simplicity
we will consider only the L? norm constraint in this section. In
particular, if the bandwidth is sufficiently small so that ol(] )( )
is constant with respect to the frequency f then the spectral ef-
ficiency defined as [69]

C— %o [bits/s/H7] (76)
is given by
. 2 +
5]
= Z logy | v N

which coincides with the spatial capacity in (51). The required
condition for the constant v in (67) becomes

£ _ y__ No
w J;n I:O'l(j)(f):|2

+
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Fig. 11. Capacity in bits/s calculated using the space-time derivation in (51)
and the narrowband theory in Section III-E versus the bandwidth W for a source
with ka = 0.38 m and a receiver radius b = 2 m.

With the replacement £/W — & this equation also coincides
with the condition in the spatial case given in (52). This shows
that the developments in the time-harmonic case in Section III
correspond to the special case of narrowband systems in the
more general theory of this section.

This result also allows us to illustrate the importance of the
full space-time analysis. As a motivating example consider
two 25-KHz narrowband signals with a central frequency
f1 = 800 MHz and f, = 900 MHz, respectively, and a total
available source L? norm of £ = 0.25 A%/m. One approach is
to assign half the available .2 norm to each signal and apply
the narrowband theory of Section III to each signal indepen-
dently. A better approach consists on treating both signals
together by applying the general space-time theory of this
section. In fact, numerical experiments showed that, for a noise
variance Ny = 0.1 V2, by treating the signals independently
the sum of both capacities was C; + Cy = 282.843 bits/s
while the capacity obtained by using the space-time theory was
C = 315.055 bits/s. This result is expected since by using
the space-time theory the resources are assigned optimally in
both space and frequency. Fig. 11 further emphasizes the same
point by showing a comparison between the capacity in bits/s
calculated using the space-time derivation in (51) and the nar-
rowband approximation above as a function of the bandwidth
W for a source with ka = 0.38 and a central frequency of
900 MHz. While for small values of the bandwidth W both
calculations are essentially equal (top plot), as W increases
they diverge which shows the necessity of a broadband theory
for larger bandwidths (bottom plot).

V. CONCLUSION

This paper investigated characterization of electromagnetic
sources (antennas) via the information-theoretic concepts of
Shannon’s information capacity and NDF. The information
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capacity was calculated for a given additive Gaussian noise
model considering different types of constraints: the well
known bound on the source L2 norm, a bound on the radiated
power, and a novel combination of both source L2 norm and
radiated power bounds. Analytical expressions were given
for the particular case of sources confined within a given
spherical volume and receivers in free space that are supported
in concentric spherical regions. These calculations are also
valid for the reciprocal case of a receiver antenna contained
in a spherical volume surrounded by a spherical transmitter
as long as the medium is such that the reciprocity condition
holds. This setup is of interest, for example, for testing and
comparing antennas informationally. Section III considered the
strictly spatial capacity and NDF calculations under a combined
constraint of L? norm and radiated power of time-harmonic
sources (although, it was shown in Section IV that this case
also corresponds to narrowband sources). It was found (in
Section III-D) that the power constraint alone is not neces-
sarily well suited for practical estimates of capacity and NDF.
Our analysis independently corroborates very recent work by
Jensen and Wallace [28] on the same issue, and provides a
conceptually simple and formally tractable alternative strategy
(relative to the regularizing approach in [28]) to deal with this
problem. In particular, our approach consists of constraining
also the source L? norm, in order to get meaningful results.
This provides a new unifying formulation to simultaneously
incorporate the two most typical constraints found in practice
(radiated power, and L? norm). These developments were then
extended to more general time-dependent cases in Section IV
where a spatio—temporal analysis was used in the calculation
of the spatio—temporal capacity and NDF under source L2
norm and radiated power constraints. There we developed a
rigorous electromagnetic information theory for space-limited,
time-limited, and essentially bandlimited electromagnetic
systems, along with some of the resulting formal and phys-
ical insights and electromagnetic applications, as well as the
associated calculation of capacity and NDF in space-limited
and strictly bandlimited systems which were handled via an
asymptotic procedure applied to the same time-limited theory.
We hope that the present effort will stimulate further advances
in the exciting field of electromagnetic information theory, with
applications to wireless communications, information-theoretic
characterization of antennas, and even information-theoretic
assessment and novel algorithms relevant to imaging and
scattering systems including the important broadband regime
treated in this paper.
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